Caffeine and selective visual processing.
نویسندگان
چکیده
This work addressed five issues: a) Does caffeine modulate electroencephalogram (EEG) background activity in a manner consistent with the idea of cortical "arousal"? b) Is performance in a simple speeded task improved under caffeine? c) Is visual processing more selective under caffeine? d) Does caffeine affect sensory discrimination? and e) Does it affect motor processes? We presented 16 subjects with a visual selection task under conditions of either caffeine or placebo. Background EEG data, gathered before administration of the task, revealed that caffeine resulted in lower slow-alpha power, relative to placebo, which is consistent with the idea of increased cortical "arousal." During the selection task, subjects had to respond manually to a given target conjunction of spatial frequency and orientation. Other conjunctions shared spatial frequency, orientation, or neither with the target. The four conjunctions were presented in a random sequence, with SOAs ranging between 750 and 950 ms. Event-related potentials (ERPs) to the conjunctions were recorded at standard scalp locations Fz, Cz, Pz, and Oz. Under caffeine, subjects made faster responses to target conjunctions (382.9 vs. 404.5 ms) and more hits, whereas the false-alarm rate was equal across conditions. Caffeine did not affect the selection potentials normally obtained in this task by subtracting, from ERPs to nontargets with the target spatial frequency, those to nontargets with the other frequency. However, an early differential positivity (50-160 ms) was found specifically under caffeine, indicative of increased selectivity. Difference ERPs as a function of physical parameters were not affected by caffeine, indicating no effect on sensory discrimination. Onsets of response-related lateralizations above the motor cortex were not affected by caffeine, suggesting that the shorter reaction times under caffeine were due to faster central or peripheral motor processes.
منابع مشابه
Influence of hypoglycaemia, with or without caffeine ingestion, on visual sensation and performance.
Full-field visual evoked potentials and visual information processing were measured in 16 normal, healthy subjects during a hyperinsulinaemic clamp. A randomized cross-over design was used across three conditions: hypoglycaemia and caffeine; hypoglycaemia and placebo; and euglycaemia and caffeine. The latency of the P100 component of the pattern-reversal visual evoked potential increased signif...
متن کاملRemoval of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies
The occurrence of contaminants in wastewaters, and their behavior during wastewater treatment and production of drinking water are key issues to re-use water resources. The present research aims to remove caffeine from aqueous solutions via adsorption technique, using Multi-Wall Carbon Nanotubes (MWCNTs) as an adsorbent under different experimental conditions. The processing variables such as p...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملA Green Potentiometric Application for Selective Monitoring of Doxylamine Succinate Dissolution Profile in Combined Dosage Form
"Green analytical chemistry" (GAC) succeeded to become an eco-friendly environmental crucial area in the field of analytical chemistry targeting at the chemical processes' and products' optimization regarding to material consumption, generation of waste and intrinsic safety, toxicity and environmental burdens. For an expressive comparison, an electro-analytical in-line potentiometric selective ...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pharmacology, biochemistry, and behavior
دوره 52 3 شماره
صفحات -
تاریخ انتشار 1995